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We complement a recent exact study by L. Šamaj on the properties of a guest charge Q
immersed in a two-dimensional electrolyte with charges +1/−1. In particular, we are
interested in the behavior of the density profiles and electric potential created by the
charge and the electrolyte, and in the determination of the renormalized charge which
is obtained from the long-distance asymptotics of the electric potential. In Šamaj’s
previous work, exact results for arbitrary coulombic coupling β were obtained for a
system where all the charges are points, provided βQ < 2 and β < 2. Here, we first
focus on the mean field situation which we believe describes correctly the limit β → 0
but βQ large. In this limit we can study the case when the guest charge is a hard disk
and its charge is above the collapse value βQ > 2. We compare our results for the
renormalized charge with the exact predictions and we test on a solid ground some
conjectures of the previous study. Our study shows that the exact formulas obtained by
Šamaj for the renormalized charge are not valid for βQ > 2, contrary to a hypothesis
put forward by Šamaj. We also determine the short-distance asymptotics of the density
profiles of the coions and counterions near the guest charge, for arbitrary coulombic
coupling. We show that the coion density profile exhibit a change of behavior if the
guest charge becomes large enough (βQ ≥ 2 − β). This is interpreted as a first step
of the counterion condensation (for large coulombic coupling), the second step taking
place at the usual Manning–Oosawa threshold βQ = 2.

KEY WORDS: Coulomb systems; Cylindrical polyelectrolytes; Renormalized charge;
Counterion condensation; Sine-Gordon model.

1. INTRODUCTION

In a recent paper(1), Šamaj studied the properties of one or two “guest” charges im-
mersed in a classical (i.e. non-quantum) two-dimensional two-component charge-
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uniandes.edu.co

787

0022-4715/05/0200-0787/0 C© 2005 Springer Science+Business Media, Inc.



788 Téllez

symmetric electrolyte. Using results from the (1+1)-integrable sine-Gordon
model(2−4), in particular the known expressions for the expectation value of the ex-
ponential field(5,6) and for the form factors(7,8) of this theory, and the exact solution
for the thermodynamics of the two-dimensional two-component plasma(9), he was
able to determine exactly the excess chemical potential of a single “guest” charge
immersed in the electrolyte, the long-distance behavior of the electric potential
created by this guest charge and the long-distance behavior of the interaction en-
ergy between two guest charges, in the whole regime where the system of point
charges is stable (i.e. when both the guest charges and the internal charges of the
electrolytes are point particles).

An important result from Ref. [1] is for the electric potential created by
a single guest charge Q immersed in the electrolyte. This potential ψ(r ) has a
long-distance behavior, as the distance r → ∞, similar to the screened potential
predicted by Debye–Hückel theory,

ψ(r ) ∼ Qren K0(m1r ) (1.1)

where m1 is the inverse screening length (it is also the mass of the lightest breather
of the sine-Gordon model), and it is given in terms of the inverse Debye length
κ = √

2πβn in Eq.(4.15) of Ref. [1]. We shall use the same notations as in
Ref. [1]: β is the Coulombic coupling, the electrolytes charges are +1/−1 and n
is the density. In (1.1), K0 is the modified Bessel function of order 0. However
Qren is not the charge Q of the guest charge (as it would be in Debye–Hückel
theory), but it is known as the renormalized charge. Šamaj found the following
expression for the renormalized charge (Eqs. (5.8) and (5.9) of Ref. [1])

Qren =
2 exp

[
− ∫ πβ/(4−β)

0
t dt

π sin t

]
(4 − β) sin

(
πβ

2(4−β)

) sin

(
πβQ

4 − β

)
. (1.2)

The concept of renormalized charge is very important in colloidal science(10−16),
thus Šamaj result is of extreme importance for colloidal science, in particular
for the study of cylindrical polyelectrolytes, which can be reduced to a two-
dimensional problem.

Šamaj claims that the rigorous validity of his result (1.2) is for β|Q| < 2,
which is the regime where the system of point particles is stable. However, he gives
some arguments to support a conjecture he called “regularization hypothesis”. This
conjecture states that the validity of (1.2) goes actually beyond β|Q| = 2. In the
case β|Q| > 2, the regularization hypothesis says that Eq. (1.2) gives the value of
the renormalized charge for a guest particle of charge Q and radius a in the limit
m1a � 1.
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In this article, we present some indications that suggest that the regularization
hypothesis is not valid. These indications come from the small-coupling limit
β → 0 but when β|Q| can be arbitrary large. This will be explained in Section 2.

In Section 3, follows a discussion on the short-distance behavior of the density
profiles, near the guest charge. In particular, we show that the coion density have a
change of behavior when β|Q| = 2 − β, which can be interpreted as a “precursor”
of the counterion condensation.

2. THE MEAN FIELD LIMIT: POISSON–BOLTZMANN EQUATION

2.1. The case a = 0 and β| Q| < 2

Let ψ(r ) be the electric potential at a distance r from a single guest charge Q
immersed in the electrolyte. The guest charge is an impenetrable disk of radius a
with its charge spread over its perimeter. We shall use the dimensionless potential
y(r̂ ) = βψ(r ) with r̂ = κr .

For a three dimensional electrolyte in the presence of an arbitrary external
charge distribution, it is rigorously proved in Ref. [17] that, in the limit β → 0,
the density and correlation functions of the electrolyte are given by the ones of
an ideal gas in the presence of the external field y(r̂ ) which is the solution of the
nonlinear Poisson–Boltzmann equation with the external source charge. Based on
this evidence, we conjecture that this is also valid for our problem, although in our
case we consider a two-dimensional system, and in the case a �= 0 we include a
hard-core interaction between the external guest charge and the electrolyte (which
is not considered in the proof of Ref. [17]). Thus, assuming the validity of this
hypothesis, the mean field electric potential y(r̂ ) for our problem is the solution
of

�r̂ y(r̂ ) = sinh(y(r̂ )) r̂ > â (2.1)

�r̂ y(r̂ ) = 0 r̂ < â (2.2)

satisfying the boundary conditions

lim
r̂→∞

y(r̂ ) = 0 (2.3)

lim
r̂→â+

r̂
dy(r̂ )

r̂
= −βQ (2.4)

lim
r̂→â−

y(r̂ ) = lim
r̂→â+

y(r̂ ) (2.5)

where â = κa is the guest particle radius in units of 1/κ and the charge Q of the
guest particle is supposed to be uniformly spread over its perimeter.

This is usually called the mean field approximation. Let us remind the reader
that the mean field approximation corresponds to the classical treatment of the
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sine-Gordon model: Poisson–Boltzmann equation is the stationary action equa-
tion of the sine-Gordon model. Let us also clarify, that the nonlinear Poisson–
Boltzmann theory is correct in the limit β → 0 when it is used to describe the
density profiles of the electrolyte created by an external charge distribution, under
the conditions considered in Ref. [17]. On the other hand, the linear Debye–Hückel
theory should be used to describe the distribution functions of the internal charges
of the bulk electrolyte in the limit β → 0 (18).

The two-dimensional Poisson–Boltzmann Eq.(2.1) has been solved
exactly(19−21), and in particular the connexion problem has been studied exten-
sively. This is the problem to relate the long-distance behavior of y(r̂ ) with its
short-distance behavior(20,22,23). This connexion problem is essential for the deter-
mination of the renormalized charge.

Let us recall some of the results from(19−21,23) relevant for our discussion.
For a point guest particle, a = 0, and β|Q| < 2, the electric potential has the
long-distance behavior

y(r̂ ) ∼ 4λK0(r̂) , r̂ → ∞ (2.6)

and the short-distance behavior

y11(r̂ ) = −2A ln r̂ + 2 ln B + o(1) , r̂ → 0 . (2.7)

The solution of the connexion problem(19−20,22) states that the constant λ inter-
vening in the long-distance behavior is related to the constants A and B of the
short-distance behavior by

A = 2

π
arcsin(πλ) (2.8)

and

B = 23A �
(

1+A
2

)
�

(
1−A

2

) (2.9)

where �() is the Gamma function. In relation to the physical problem, one im-
mediately recognizes that 2A = βQ is the bare charge of the guest particle and
4λ = βQren is the renormalized charge. Thus, the renormalized charge is given by

βQren = 4

π
sin

(
πβQ

4

)
. (2.10)

Notice that (2.10) corresponds to the limit β → 0 while keeping βQ arbitrary large
(with β|Q| < 2) of Eq. (1.2). Indeed the mean field approximation for the study
of single guest charge Q immersed in the electrolyte is asymptotically correct in
the low coupling limit β → 0 and βQ arbitrary.
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2.2. The case a �= 0 and β| Q| > 2

If β|Q| > 2 it is mandatory to consider that the guest particle is a disk with
impenetrable radius a �= 0, otherwise the charges of opposite sign of the electrolyte
will collapse with the guest charge. Although it is not possible (yet) to obtain exact
results when a �= 0 for arbitrary values of β, in the limit β → 0 we can obtain
some results, under the hypothesis that the mean field approach is correct in that
limit when a �= 0. Thus, when a �= 0, and β → 0 and β|Q| > 2, we assume that
the electric potential is given again by the mean field theory: it is the solution of
Eqs. (2.1) and (2.2) and the boundary conditions (2.3), (2.4) and (2.5). We will
consider the case κa = â � 1 but a �= 0.

To formally solve this problem, let us introduce y0(r̂) the solution of Poisson-
Boltzmann Eq. (2.1) in the whole space, for r̂ ∈ R

+, and satisfying the boundary
condition (2.6) when r̂ → ∞. So far, λ in Eq. (2.6) can be seen as an integration
constant. Then, the electric potential is given by

y(r̂ ) =
{

y0(â) for r̂ ≤ â
y0(r̂ ) for r̂ > â

(2.11)

Enforcing the boundary condition (2.4) at r̂ = â determines the integration con-
stant λ.

To determine λ in the case â � 1 we need to know the short-distance asymp-
totics of y0(r̂ ). Without loss of generality (because the electrolyte is charge sym-
metric), let us suppose that Q > 0. For βQ < 2 + O(1/| ln â|)2 , the short-distance
asymptotics are the same as in the previous section, given in Eq. (2.7).

If βQ is large enough (larger than 2) then λ > 1/π , and then the short-
distance behavior of y0(r̂ ) changes drastically. It is now given by(19,20).

y0(r̂ ) = −2 ln

(−r̂

4µ

)
− 2 ln

[
sin

(
2µ ln

r̂

8
+ 2φ(µ)

)]
+ O(r̂4) , r̂ → 0

(2.12)
with

φ(µ) = arg(�(1 − iµ)) . (2.13)

Let us define

ϕ(r̂ , µ) = 2µ ln
r̂

8
+ 2φ(µ) (2.14)

which is the argument of the sine function in (2.12). The constant µ appearing in
the short-distance behavior of y0(r̂ ) is related to λ (see Eq. (2.16) below) and can
be determined by the boundary condition (2.4) at r = a. It is the solution of the

2 When a �= 0 there is a small (negative) correction of order 1/| ln a| to the critical value βQ = 2, for
details see [24].
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transcendental equation

βQ = 2 + 4µ cot

[
2µ ln

â

8
+ 2φ(µ)

]
. (2.15)

The solution of the connexion problem gives the following relation between
λ and µ (19−20)

µ = − 1

π
cosh−1(πλ) (2.16)

Notice that we choose here µ < 0. If βQ > 2 the argument of the cot function in
Eq. (2.15) is in the range [π/2, π ]. Eq. (2.16) allows us to obtain the renormalized
charge Qren.

For a �= 0, the definition of the renormalized charge comes from the long-
distance behavior of the electric potential and its comparison with the solution
from the linear Debye–Hückel theory

y(r̂ ) ∼ βQren

âK1(â)
K0(r̂ ) , r̂ → ∞ (2.17)

where K1 is the modified Bessel function of order 1. Comparing with (2.6) we
have βQren = 4âK1(â)λ. Notice the additional factor âK1(â) in the renormalized
charge. However this factor is not really important since if â � 1, âK1(â) ∼ 1.
We shall see that it is the behavior of λ which will be very different from the case
when a = 0 and βQ < 2. Once µ has been determined from Eq. (2.15), using
Eq. (2.16) we can find the renormalized charge

βQren = 4âK1(â)

π
cosh(πµ) (2.18)

Let us comment a few points on the small-r̂ behavior of the potential y(r̂ )
and of y0(r̂ ). From Eq. (2.12), one can distinguish three special regions. Notice
that ϕ(r̂ , µ) is a decreasing function of r̂ since µ < 0. The first region is for r̂ = 0
up to a value r∗ such that

ϕ(r∗, µ) = π . (2.19)

In this region, the formal solution y0(r̂ ) of Poisson–Boltzmann equation has no
physical meaning, since ϕ(r̂ , µ) decreases from +∞ to π , and then the argument
of the logarithm of the second term of Eq. (2.12) oscillates around zero, changing
of sign, thus y0(r̂ ) is not always real but can become complex. However this region
is inside the guest charge (r∗ ≤ â) and in this region the electric potential is a
constant: y(r̂ ) = y0(â).

The second region is for r̂ ∈ [â, rM ] where rM is given by

ϕ(rM , µ) = π/2 . (2.20)
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In this region π/2 < ϕ(r̂ , µ) < π . If r̂ is close to â (and â is close to r∗), the
second term of y(r̂ ) in Eq. (2.12) can be very large because ϕ(r̂ , µ) is close to
π . Then, as r̂ increases, ϕ(r̂ , µ) decreases from π down to π/2, and then, the
second term of y(r̂ ) in Eq. (2.12) decreases very fast. Since the counterion density
is proportional to ey(r̂ ), this indicates that close to the guest charge there is a very
large counterion density, which decreases quite fast as the distance r̂ increases.
This is a manifestation of a widely known phenomenon in the theory of cylindrical
polyelectrolytes, known as the Manning–Oosawa counterion condensation(25,26).
The layer of “condensed” counterions extends from r̂ = â to r̂ = rM .

When r̂ = rM the second term of Eq. (2.12) vanishes. At this point the
total charge Qguest+condens of the guest particle plus the condensed counterion
layer is such that βQguest+condens = 2, as it can be seen from the first term of
Eq. (2.12). We recover here another characteristic of the Manning–Oosawa coun-
terion condensation(25−27): the layer of condensed counterions reduces the bare
charge of the guest charge to βQguest+condens = 2. Above rM , we enter a third re-
gion, outside the condensed layer of counterions, where r̂ starts to become large
enough such that the small-r̂ behavior (2.12) is no longer valid.

From a physical argument we can now see that as βQ becomes larger than
2, the renormalized charge is not given anymore by Eq. (2.10) (which is valid
only for a = 0 and βQ < 2). Indeed, from the discussion above, we know that in
the region r∗ > rM , just outside the counterion condensed layer, the guest charge
“dressed” with the condensed counterions can be seen as an object with a charge
Qguest+condens = 2/β. Thus its renormalized charge will be close to the prediction
of Eq. (2.10) for βQ = 2, that is βQren is close to 4/π .

The bare charge could be arbitrary large (with βQ > 2), but the renormalized
charge will remain close to 4/π , because of the Manning–Oosawa counterion
condensation phenomenon. In particular, the renormalized will not oscillate and
become eventually negative as predicted by (2.10) for βQ > 2, if the regularization
hypothesis was valid.

This argument can also be justified from a more rigorous point of view. If â
is small enough, the solution of Eq. (2.15) for µ is small (of order 1/| ln(â/8)|).
The renormalized charge is given by the correct formula (2.18) when βQ > 2. If
µ � 1 and â � 1, we see from (2.18) that βQren is close to 4/π . It is actually
slightly larger than 4/π .

This is verified numerically in figure 1, where we computed the renormalized
charge from a numerical resolution of Poisson–Boltzmann equation, using the
method described in Ref. [28]. We confirm numerically that the renormalized
charge, for βQ > 2, is slightly above 4/π (for â � 1). This can be contrasted
with the prediction of the regularization hypothesis, shown in dashed line in Fig.1,
where Qren is expected to decay when βQ > 2 and even vanish and change its
sign at βQ = 4. The numerical results show that this is not true: Qren is always an
increasing function of Q, and eventually saturates to a finite value for large values
of Q.
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Fig. 1. The renormalized charge Qren as a function of the bare charge Q, in the mean-field limit
β → 0, for various values of the radius a of the guest charge. For a = 0, the exact result (2.10) is
shown in full thick line for βQ < 2. In dashed line, the extension of (2.10) for βQ > 2 is shown:
this is the prediction of the regularization hypothesis from Ref. [1]. The symbols correspond to values
a > 0, obtained from a numerical resolution of Poisson–Boltzmann equation.

This saturation phenomenon(27) of the renormalized charge is quite usual in
the nonlinear Poisson–Boltzmann approach to the problem. When the saturation
phenomenon occurs we also have â = r∗. Indeed, if â = r∗, by the definition (2.19)
of r∗ we have ϕ(â, µ) = π and one can verify that in Eq. (2.15), Q → +∞.
Solving

ϕ(â, µ) = π (2.21)

for µ and replacing in (2.18), allow us to obtain the saturation value of the
renormalized charge. Eq. (2.21) is a transcendental equation, but since µ is small,
of order 1/| ln(â/8)|, if â � 1, it can be solved in an expansion of powers of
1/| ln(â/8)|. For example, up to order 4 in 1/| ln(â/8)|, we find the renormalized
charge at saturation(23)

βQsat
ren = 4âK1(â)

π

[
cosh

π2

2
(
ln â

8 + γ
) + O(| ln â|−5)

]
(2.22)

where γ � 0.5772 is the Euler constant.
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In conclusion to this part, we notice the failure of the regularization hypothesis
in the limit β → 0 with βQ > 2 and â � 1. The renormalized charge is not given
by Eq. (1.2) in that limit as the regularization hypothesis claims.

3. SHORT-DISTANCE BEHAVIOR OF THE DENSITY PROFILES: A

“PRECURSOR” OF THE COUNTERION CONDENSATION AT

β Q = 2 − β

An important factor, which is responsible of the failure of the regularization
hypothesis exposed in the previous section, is the change of behavior of the electric
potential at short distances when βQ > 2. In this section we consider the general
situation when 0 < β < 2 and we return to the case of point particles a = 0. We
study the short-distance behavior of the density profiles and show that there is a
change of behavior in the asymptotic expansion at short distances of the coion
density profiles when β|Q| = 2 − β.

The short-distance behavior of the density profiles, in the presence of the guest
charge, can be obtained by adapting an argument presented in Refs. [29, 30] for the
correlation functions. Let suppose, without loss of generality, that Q > 0. From
the general principles of statistical mechanics we know that the short-distance
behavior of the density profiles, near the guest charge at the origin, is dominated
by the Boltzmann factor of the Coulomb potential e−βQqvc(r ), with vc(r ) = − ln r
the Coulomb potential. We have

nq (r ) ∼ nqcQq rβQq , r → 0 (3.1)

with q = ±1, nq is the bulk density of charges q, and the constant cQq is related
to the excess chemical potentials (µexc

q , µexc
Q , µexc

Q+q ) of the charges q, Q and
Q + q, which can in turn be expressed as expectation values of exponentials of
the sine-Gordon field φ,

cQq = exp
[

− β
(
µexc

Q+q − µexc
Q + −µexc

Q

)]
=

〈
eib(Q+q)φ

〉
〈eibQφ〉〈eibqφ〉 (3.2)

with the same conventions as in(1) for the normalization of the sine-Gordon field
and b2 = β/4. In the case q = +1 (coions, same sign as Q) this is valid provided
βQ is small enough, as we will explain below.

Let �[Q] be the grand canonical partition function of the system composed
by the electrolyte and the guest charge Q fixed at the origin, with fugacities z+
and z− for positive and negative particles respectively. The partition function is
well defined for point particles if β < 2 and β|Q| < 2. The density of particles of
charge q is

nq (r) = zqrβQq �[Q; q, r]

�[Q]
(3.3)
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where �[Q; q, r] is the partition function of the electrolyte in the electric field
created by a guest charge Q fixed at the origin and a charge q fixed at r.

When r → 0, �[Q; q, r] has a finite limit provided that β|Q + q| < 2, since
�[Q; q, 0] = �[Q + q] is the partition function of a system composed by the
electrolyte and a guest charge Q + q at the origin. Under this condition we can
affirm that the short-distance behavior (3.1) for the density profile is valid. This
can also be seen from (3.2): the expectation value 〈eib(Q+q)φ〉 is finite provided
β|Q + q| < 2(1).

For Q > 0 and q = 1, the above condition reads βQ < 2 − β. When βQ >

2 − β, Eq. (3.1) is no longer valid. We must return to the general expression (3.3),
and study the short-distance behavior of �[Q; q, r]. If βQ > 2 − β, �[Q; q, r]
diverges as r → 0. Its short-distance behavior is dominated by the approach of
a charge −1 to the system of the charges Q and +1 which are separated by a
distance r (29). This gives

�[Q; q, r] ∼ cst × r−β(Q+1)+2 , r → 0 (3.4)

with cst some constant, which will not be needed for our analysis, but that can even-
tually be evaluated(31,32). Thus, the short-distance behavior of the coion density
profile, for βQ > 2 − β, is

n+(r ) ∼ cst × r 2−β , r → 0 (3.5)

Notice that, on the other hand, the counterion density profile n−(r ) behaves always
as predicted by Eq. (3.1), since the corresponding �[Q; −1, r] has always a finite
limit at r = 0, provided β < 2 and βQ < 2.

The mean interaction potential w+,Q(r ) of a coion (charge +1) with the
guest charge Q and its polarization cloud, is defined by n+(r ) = n+e−βw+,Q (r ).
From (3.5), we deduce that its short-distance behavior is

βw+,Q(r ) =
{−βQ ln r + O(1), if βQ < 2 − β

−(2 − β) ln r + O(1), if βQ > 2 − β
, r → 0 (3.6)

Notice that, in particular, the short-distance leading behavior of w+,Q(r ) is inde-
pendent of Q when βQ > 2 − β. This situation can be interpreted as a “precur-
sor” of the Manning–Oosawa counterion condensation. When βQ increases above
2 − β, the counterion cloud near the guest charge reduces its bare charge so that
the coions “see” a “dressed” object with charge 2/β − 1, which is independent of
Q.

On the other hand, the counterion mean interaction potential has always the
behavior (provided β < 2 and βQ < 2)

βw−,Q(r ) ∼ βQ ln r + O(1) , r → 0 . (3.7)

The counterions continue to “see” the bare guest charge Q even if βQ > 2 − β.
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When βQ ≥ 2, we arrive at the collapse of the charge Q with the counterions.
In this case we need to consider that the guest charge is an impenetrable disk with
radius a �= 0. βQ = 2 corresponds to the well-known Manning threshold for
counterion condensation.

We would like to stress that the above analysis is valid for large coupling 0 <

β < 2. The usual presentation of the counterion condensation phenomenon(25,26)

is done in a small-coupling approximation β → 0. Notice that in this case both
limits βQ < 2 − β and βQ < 2 coincide. Here we have put in evidence that,
at large coulombic coupling β, the counterion condensation might actually take
place in two steps: first when βQ = 2 − β, where the coion density changes its
short-distance behavior, but not the counterion density, and a second step, at the
usual threshold βQ = 2.

Let us conclude this section with a conjecture, suggested by Šamaj(33). The
mean field analysis of the previous section shows that the formula (1.2) for the
renormalized charge is not valid beyond βQ = 2 in the limit β → 0. For arbitrary
values of β, the validity of (1.2) might be beyond βQ = 2. In the case β → 0, the
failure of (1.2) when βQ > 2 is accompanied by a change of behavior in the short
distance asymptotics of the electric potential.

For arbitrary β, when βQ > 2 it is necessary to introduce a hard core for the
guest particle. The coion density will certainly change its short distance behavior
at βQ = 2. On the other hand there are indications that the counterion density
will still behave at short distances as r−βQ up to βQ < 2 + β. This is because,
as previously noted, �[Q; −1, r] remains finite up to βQ < 2 + β, for small r.
Since the counterion density determines the dominant behavior at short distances
of the electric potential, the electric potential might actually not change its short
distance behavior until βQ > 2 + β. If this is true, the regularization hypothe-
sis put forward by Šamaj, might be valid up to βQ < 2 + β (33). Interestingly,
this leaves open the possibility of charge inversion (i.e. the renormalized charge
becomes negative) if β > 1, when βQ > 4 − β.

4. CONCLUSION

As a complement to Ref. [1], we have studied the low-coupling, mean field
situation, β → 0, but β|Q| arbitrary, in order to determine the behavior of the
renormalized charge when β|Q| > 2 of a guest charge Q immersed in an elec-
trolyte. We have shown that, at least in this mean field situation, the regularization
hypothesis put forward by Šamaj in Ref. [1] is not valid: the formula (1.2) for the
renormalized charge is not valid when β|Q| > 2.

We have also studied the short-distance asymptotics of the density profiles.
The coion density profile exhibits a change of behavior if the guest charge Q is
large, βQ > 2 − β, as shown in Eq. (3.6). Colloquially speaking, it is like if the
coions “see” a “dressed” charge 2/β − 1 instead of Q, when βQ > 2 − β. We
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interpret this as a first step in the Manning–Oosawa counterion condensation when
the coulombic coupling β is large, the second step taking place when βQ = 2 as it
is usually explained in the literature(25,26) for the small coupling β → 0 situation.
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